域适应性(DA)旨在转移标记良好的源域的知识,以促进未标记的目标学习。当转向特定的任务,例如室内(Wi-Fi)本地化时,必须学习跨域回归剂以减轻域移位。本文提出了一种新颖的方法对抗性双向反应器网络(ABRNET),以寻求更有效的跨域回归模型。具体而言,开发了差异的双向试剂架构,以最大化双向试验的差异,以发现远离源分布的不确定目标实例,然后在特征提取器和双回归器之间采用了对抗性训练机制,以产生域内不变的表示。为了进一步弥合大域间隙,设计了一个特定域的增强模块,旨在合成两个源相似和类似的类似中间域,以逐渐消除原始域的不匹配。对两个跨域回归基准的实证研究说明了我们方法解决域自适应回归(DAR)问题的力量。
translated by 谷歌翻译
我们提出了一种确定性等效方案,以自适应控制标量线性系统,约为I.I.D.高斯干扰和有限的控制输入约束,而无需先验系统参数的界限,也不需要控制方向。假设该系统处于偏差稳定的范围内,则证明了闭环系统状态的均方根界。最后,提出了数值示例,以说明我们的结果。
translated by 谷歌翻译
我们试图将广泛的神经网络的非线性建模功能与模型预测控制(MPC)的安全保证相结合,并在严格的在线计算框架中。可以使用Koopman运算符捕获所考虑的网络类,并将其集成到基于Koopman的跟踪MPC(KTMPC)中,以用于非线性系统以跟踪分段常数引用。原始非线性动力学与其训练有素的Koopman线性模型之间模型不匹配的影响是通过在建议的跟踪MPC策略中使用约束拧紧方法来处理的。通过选择两个Lyapunov候选功能,我们证明解决方案是可行的,并且在存在有限的建模错误的情况下,在线和离线最佳可触发稳定输出均具有稳定的输入到状态。最后,我们展示了一个数值示例的结果以及自动地面车辆在跟踪给定参考文献中的应用。
translated by 谷歌翻译
评估对象图像的模糊对于提高对象识别和检索的性能至关重要。主要挑战在于缺乏具有可靠标签和有效学习策略的丰富图像。当前的数据集标记为有限且混乱的质量水平。为了克服这一限制,我们建议将成对图像之间的等级关系标记,而不是它们的质量水平,因为人类更容易标记,并建立具有可靠标签的大规模逼真的面部图像模糊评估数据集。基于此数据集,我们提出了一种仅以成对等级标签作为监督的方法来获得模糊分数。此外,为了进一步提高绩效,我们提出了一种基于四倍体排名一致性的自制方法,以更有效地利用未标记的数据。受监督和自我监督的方法构成了最终的半监督学习框架,可以端对端训练。实验结果证明了我们方法的有效性。
translated by 谷歌翻译
新课程经常出现在我们不断变化的世界中,例如社交媒体中的新兴主题和电子商务中的新产品。模型应识别新的类,同时保持对旧类的可区分性。在严重的情况下,只有有限的新颖实例可以逐步更新模型。在不忘记旧课程的情况下识别几个新课程的任务称为少数类的课程学习(FSCIL)。在这项工作中,我们通过学习多相增量任务(limit)提出了一个基于元学习的FSCIL的新范式,该任务从基本数据集中综合了伪造的FSCIL任务。假任务的数据格式与“真实”的增量任务一致,我们可以通过元学习构建可概括的特征空间。此外,限制还基于变压器构建了一个校准模块,该模块将旧类分类器和新类原型校准为相同的比例,并填补语义间隙。校准模块还可以自适应地将具有设置对集合函数的特定于实例的嵌入方式化。限制有效地适应新课程,同时拒绝忘记旧课程。在三个基准数据集(CIFAR100,Miniimagenet和Cub200)和大规模数据集上进行的实验,即Imagenet ILSVRC2012验证以实现最新性能。
translated by 谷歌翻译
从物理层和粗粒度接收信号强度指示符(RSSI)测量的细粒度通道状态信息(CSI)互补,中间粒度的空间光束属性(例如,光束SNR)可在毫米波( MMWAVE)在强制波束训练阶段的频带可以重新估算Wi-Fi传感应用。在本文中,我们提出了一种用于Wi-Fi的多频带Wi-Fi融合方法,该方法是在粒度的60GHz处,从Sub-6 GHz和中粒梁SNR中的细粒度CSI的特征进行分层熔化的特征匹配框架。通过以不同的粒度水平与CSI和光束SNR配对的两个特征映射来实现粒度匹配,并将所有配对特征映射到具有可读权重的融合特征映射中。为了进一步解决有限标记的培训数据问题,我们提出了一种基于AutoEncoder的多频带Wi-Fi融合网络,可以以无监督的方式预先培训。一旦预先培训了基于AutoEncoder的融合网络,我们将通过微调融合块来分离解码器并将多任务传感头附加到融合特征映射并从头开始重新培训多任务头。通过内部实验Wi-Fi传感数据集进行多频带Wi-Fi融合框架,跨越三个任务:1)姿势识别; 2)占用感应;和3)室内本地化。与四种基线方法(即,仅CSI,仅限CSIS SNR,输入融合和特征融合)进行比较演示了粒度匹配,提高了多任务传感性能。定量性能被评估为标记培训数据,潜在空间维度和微调学习率的数量的函数。
translated by 谷歌翻译
Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight, which uses photon time-of-flight information encoded in light after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is of high possibility to be degraded due to noises and distortions. In this paper, we propose two novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (i.e., signal and object)-domain curvature regularization model. Fast numerical optimization algorithms are developed relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, which are further accelerated by GPU implementation. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. All our codes and data are available at https://github.com/Duanlab123/CurvNLOS.
translated by 谷歌翻译
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
translated by 谷歌翻译